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Effect of spatial bias on the nonequilibrium phase transition in a system of coagulating
and fragmenting particles

R. Rajesh* and Supriya Krishnamurthy†

Department of Physics—Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdon
~Received 6 June 2002; published 24 October 2002!

We examine the effect of spatial bias on a nonequilibrium system in which masses on a lattice evolve
through the elementary moves of diffusion, coagulation, and fragmentation. When there is no preferred direc-
tionality in the motion of the masses, the model is known to exhibit a nonequilibrium phase transition between
two different types of steady state, in all dimensions. We show analytically that introducing a preferred
direction in the motion of the masses inhibits the occurrence of the phase transition in one dimension, in the
thermodynamic limit. A finite-size system, however, continues to show a signature of the original transition,
and we characterize the finite-size scaling implications of this. Our analysis is supported by numerical simu-
lations. In two dimensions, bias is shown to be irrelevant.
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I. INTRODUCTION

Systems far from equilibrium can undergo nonequilibriu
phase transitions between two different types of steady s
when the parameters of the system are varied. It is impor
to know how robust such transitions are with respect
changes in the governing dynamics and to ask if a signa
of the original phases remains, even if the transition is lo
The introduction of a spatial bias~a preferred direction! is
one factor that is known to affect the scaling functions a
the exponents characterizing nonequilibrium transitions.
amples where bias plays a role include models of extre
dynamics@1,2#, the simple exclusion process@3#, sandpile
models@4#, directed percolation@5#, interface depinning@6#,
reaction-diffusion systems@7#, and random walkers in fracta
media@8#. These examples consist of systems in which
rameters need to be tuned to reach criticality as well as
tems that are self-organized critical. In both cases, bias e
changes the universality class characterizing the sys
@1–7# or causes localization@8# or induces boundary driven
transitions@3#.

In this paper we study the effect of bias on a recen
introduced model of aggregation and fragmentation, wh
was shown @9,10# to exhibit an unusual nonequilibrium
phase transition belonging to a universality class differ
from models studied earlier@3,11#. We show that bias in this
model plays a different role from any of those mention
above in that even an arbitrarily small bias inhibits the ph
transition entirely in one dimension. Remarkably though
signature of the transition remains and modifies the fin
size behavior of the system, and we characterize the sca
implications of this. In two and higher dimensions, we sh
that bias has no effect on the phase transition.

We define the model on ad-dimensional hypercubic lat
tice with periodic boundary conditions. Starting from a ra
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dom distribution of non-negative integer masses, the sys
evolves in time via the following microscopic processes.
an infinitesimal timedt, ~i! with probability pdt (qdt), the
mass at each site hops to one of its nearest neighbors
increasing ~decreasing! coordinates;~ii ! with probability
wpdt (wqdt), unit mass is chipped off from an already e
isting mass and added to one of its nearest neighbors
increasing~decreasing! coordinates. Following these move
the masses at each site add up~see Fig. 1!. The dynamics
conserves the total mass of the system. Hence, the pa
eters defining the system are the biasp2q, the densityr,
and the chipping or fragmentation ratew. The casep5q
corresponds to the zero bias case or the symmetric m
while the casepÞq introduces a preferred direction in th
motion of the masses and corresponds to the asymm
model.

The model may be mapped onto generalizations of ot

nta

FIG. 1. ~a! The model as defined in the text.~b! To obtain the
hard core lattice model from the masses, lay down the masse
their sides.~c! The interface is obtained by replacing every shad
circle by a line segment in the145° direction and every empty
circle by a line segment in the245° direction.
©2002 The American Physical Society32-1
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well studied models of nonequilibrium statistical mechani
In one dimension the system of masses described above
be equivalently thought of@10# as a collection of particles
and holes on a ring, or a one-dimensional interface evolv
in time ~see Fig. 1!. In this language, thew→` limit exactly
corresponds to the well studied symmetric~asymmetric! ex-
clusion process@12# for p5q (pÞq). In the interface lan-
guage, this corresponds@13# to an interface evolving via the
Kardar-Parisi-Zhang or the Edwards-Wilkinson dynam
@14# for the casespÞq and p5q, respectively. For a finite
w, the nearest neighbor particle exchanges of the exclu
process~or corner flips of the interface growth model! are
further augmented by long-range moves.

Models similar to the one studied in this paper have a
been studied in other contexts. A slightly different off-latti
version of this model was studied within the rate equat
approach in the context of polymer chain growth@15#. In this
case, the mass clusters were thought to represent polym
Although the aggregation of polymers and dissociation
single monomers were allowed in this model, it lacked
important process of local diffusion which we include in o
study. Various models of coagulation and fragmentati
with coagulation rate proportional to mass, have been stu
in the context of gelation@16#. In these systems, due to th
enhanced coagulation, a gel~a cluster which contains a finit
fraction of the total mass! forms at a finite time. The expo
nents at the transition point were shown to depend
whether the process of fragmentation was present or ab
Models of fragmentation in which a fraction of existing ma
~as opposed to a single particle! may break off have also
been studied in@17–19#. In these models, it could be de
duced that an infinite aggregate that contains a finite frac
of the total mass never forms. A model with bias very simi
in spirit to the model we study here was also studied in
context of traffic flow@20# and the phase transition observ
numerically was interpreted as a traffic jam occurring
large densities of cars.

An understanding of the steady state reached by the
tem may be obtained by considering the limits of only diff
sion (w50) or only chipping (w5`). Both of these case
are exactly solvable. In the former case, the system map
the well studied reaction-diffusion systemmA1nA→(m
1n)A, and the steady state reached is simply one in wh
all the particles accumulate on a single site. In the oppo
limit ( w→`), the model is again exactly solvable and t
system reaches a steady state in which the mass is unifo
spread out over the system with the probability that a giv
site has a massm being exponentially distributed.

The special casep5q, corresponding to zero bias, wa
studied earlier using a mean field approximation@9#, Monte
Carlo simulations@10,21#, as well as some exact analys
@21#. It was shown that the system undergoes a nonequ
rium phase transition in ther-w plane at some critical den
sity rc(w). In particular,P(m), the probability that a ran-
domly chosen site has massm, was shown to vary for large
m as ~i! P(m);exp(2m/m* ) for r,rc , ~ii ! P(m);m2t

at r5rc with t55/2, and ~iii ! P(m);m2t

1‘‘infinite aggregate’’ forr.rc , where by ‘‘infinite aggre-
gate’’ we mean a single large mass equaling a finite frac
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of the total mass of the system. That is, the mass distribu
P(m) changes from an exponential distribution to an alg
braic one atrc . For r.rc , the mass distribution remain
the same as atrc , while all the mass in excess of the critic
density coagulates together forming an infinite aggreg
The mathematical mechanism giving rise to the infinite a
gregate was found to be very similar to that of equilibriu
Bose-Einstein condensation in an ideal Bose gas.

Bias is introduced in the motion of the masses on
lattice by lettingpÞq. In the limits of only diffusion or only
chipping, the steady states reached are the same as tho
thep5q case. Hence, one might expect a phase transitio
the r-w plane as before. Further, the mean field analy
@9,10# does not recognize any difference between the t
cases and thus predicts the same behavior as in the zero
case. Earlier Monte Carlo simulations of this system in o
dimension did indeed seem to suggest the existence
phase transition similar to the symmetric case, though w
t'2.0 @10#. The results of these simulations are summariz
in Fig. 2. For a fixed lattice size andw, when the total mass
in the system is increased beyond a certain critical mass
formation of an aggregate is observed. The power law
gime has a lattice size dependent cutoff~see inset of Fig. 2!
as in the symmetric case. However, the value oft (;2.0) is
a puzzle since a finite system density implies thatt should be
strictly greater than 2~the first moment, which is the densit
of the system, would diverge ift,2).

In this paper, we analyze the model forpÞq and show
that the apparent existence of a phase transition in the M
Carlo simulations is purely a finite-size effect in one dime
sion, with the critical densityrc(V) for fixed w diverging
with system sizeV as ln(V). We argue that the exponentt is
exactly 2. In two and higher dimensions, however, a tran
tion from an exponential to an aggregate phase does occ
finite critical density.

FIG. 2. P(m) is plotted againstm for three values of density
The cutoff is seen to depend onr for small values of the density
while for larger values it is independent ofr. The mass in excess o
the critical mass forms an aggregate. The solid line has an expo
22. The simulation was done for system sizeV5500 and w
53.0. In the inset, the dependence of the cutoff of the power law
V is shown. The simulations were done forr515.
2-2
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EFFECT OF SPATIAL BIAS ON THE . . . PHYSICAL REVIEW E 66, 046132 ~2002!
The rest of the paper is organized as follows. In Sec.
we show analytically that an aggregate phase cannot exi
the one dimensional system, thereby showing that there i
phase transition in one dimension. Section III contains
merical evidence for the results of Sec. II, from Monte Ca
simulations of the model. In Sec. IV the exponents desc
ing the probability distribution for mass in one dimension a
characterized. Section V contains a numerical study of
two-dimensional problem. Section VI contains a summ
and conclusions.

II. ARGUMENTS FOR NO PHASE TRANSITION IN THE
PRESENCE OF SPATIAL BIAS IN ONE DIMENSION

In this section, we prove that in the presence of a spa
bias, an aggregate phase cannot be present at any finite
sity in one dimension. We do so by assuming that an ag
gate phase exists, and then showing that this leads to ce
contradictions. To proceed, assume that a single infinite
gregate exists in the system and that the rest of the syste
at a finite critical densityrc ~analogous to the symmetri
case!. Consider now a frame of reference that is attached
this aggregate. Lethk

6(t) be the mass transferred in an i
finitesimal timedt at time t from a sitek lattice sites away
from the aggregate to a sitek61 sites from the aggregate
Then

mk~ t1dt!5mk~ t !1hk21
1 1hk11

2 2hk
12hk

21ak
11ak

2 ,
~1!

where mk(t) is the mass at a sitek lattice sites from the
aggregate at timet, andak is the change in mass due to th
diffusion of the aggregate. The time dependence of the v
ables on the right hand side of Eq.~1! have been suppresse
for the sake of clarity. Equation~1! accounts for all the ways
in which the mass on a sitek sites away from the aggrega
can change under the dynamics. These changes are ca
either by the mass transfer to and from neighboring site
exemplified by thehk’s or by the motion of the aggregate
which leads to a relabeling of sites, as depicted by theak’s.

From the definition of the model, it is clear that

hk
15H mk with prob pdt,

12dmk,0 with prob pwdt,

0 otherwise,

~2!

and similarly forhk
2 , with p replaced byq in Eq. ~2!. When

the aggregate hops, the sites have to be relabeled and
leads to

ak
15H mk112mk with prob pdt,

0 otherwise,
~3!

and correspondingly forak
2 , with k11 replaced byk21

andp by q in Eq. ~3!. Taking averages on both sides in E
~1! and setting the time derivatives to zero in the steady st
we obtain
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dt
505w@psk212~p1q!sk1qsk11#1~p1q!

3@rk2122rk1rk111r0~2dk,02dk,212dk,1!#,

~4!

wheres051, andrk5^mk& and sk5^12dmk,0& are the av-
erage density and occupation probability of a sitek lattice
sites away from the aggregate, respectively. A point to n
about Eq.~4! is that bias plays a role only in the term
coupling to the chipping ratew. It can be checked that intro
ducing a bias only in the diffusion move and keeping t
chipping move symmetric does not change the behavio
the model from the fully symmetric versionp5q.

We now consider Eq.~4! in the steady state when the tim
derivative is set to zero. The set of linear equations in Eq.~4!
may be solved for a finite or an infinite lattice to obtain t
rk’s in terms of thesk’s. In the former case, a closed form
expression for the densities is easily obtained. However,
more informative to look at the equations for an infinite la
tice, where the sites with negative~left of aggregate! and
positive ~right of aggregate! indices may be treated sepa
rately. For this case, we obtain forn.0,

rn5nFr11
w

p1q
~qs12p!1

w~p2q!

p1q
sc

r G
1

w~p2q!

p1q (
k51

n

~sk2sc
r !1

wp

p1q
~12sn!, ~5!

r2n5nFr211
w

p1q
~ps212q!2

w~p2q!

p1q
sc

l G
1

w~p2q!

p1q (
k521

2n

~sc
l 2sk!1

wq

p1q
~12s2n!, ~6!

wheresc
r 5 limn→`sn andsc

l 5 limn→`s2n .
By assumption, we require thatrn tends to a finite value

asn→`. For this, we require first that the term proportion
to n in Eqs. ~5! and ~6! vanishesand secondly thats6n ap-
proaches its asymptotic value faster than 1/n. The first con-
dition expressesr1 andr21 in terms ofs1 ands21 as

r15
w~p2qs1!2w~p2q!sc

r

p1q
, ~7!

r215
w~q2ps21!2w~q2p!sc

l

p1q
, ~8!

which when substituted in thek50 equation of Eq.~4! leads
to

sc
r 5sc

l [sc . ~9!

This is consistent with the fact that far from the aggrega
the occupation probability is the same on either side. T
second condition, thats6n approaches its asymptotic valu
2-3



ts

sit

s
b

e
ns

o-
ring

-

R. RAJESH AND S. KRISHNAMURTHY PHYSICAL REVIEW E66, 046132 ~2002!
faster than 1/n, will be useful for determining the exponen
and will be studied numerically in Sec. III.

A important point to note from Eq.~5! is that the two
casesp5q and pÞq are quite different. Forp5q, the cu-
mulative sum over thesn’s vanishes andrn depends only on
the site occupancy of the siten. However, whenpÞq, the
sum plays a role in determining the value of the site den
and it becomes important to understand the behavior ofs6n
as a function ofn. We do that in Sec. III.

We now examine the two-point correlations in the pre
ence of the aggregate in order to obtain further relations
es

er

ca
s

th
e

d.

t
er
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tween therk’s andsk’s. Using these relations we will be abl
to show a contradiction. Consider the two-point correlatio
in the aggregate frame of reference. Let

Cr ,k5^mrmr 1k&. ~10!

The equations governing the temporal evolution of the tw
point mass-mass correlations may be derived by conside
the mass transfer between two neighboring sites@see Eq.
~1!#. Multiplying together Eq.~1! for mr and the correspond
ing one formr 1k , keeping terms up to orderdt, and taking
averages, we obtain
dCr ,k

dt
5pCr 11,k1qCr 11,k211pCr ,k211qCr ,k111pCr 21,k111qCr 21,k23~p1q!Cr ,k1w@2pDr 21,k111~p1q!Dr ,k

2qDr 11,k212pEr ,k211~p1q!Er ,k2qEr ,k11#2dk,1@qCr 11,01pCr ,01wpsr1wqsr 11#, r ,k51,2, . . . , ~11!

dCr ,0

dt
5~p1q!@Cr 11,022Cr ,01Cr 21,0#12pCr 21,112qCr ,12w@2pDr 21,112qEr ,1#1w@~p1q!sr1psr 211qsr 11#,

r 51,2, . . . , ~12!
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Dr ,k5^dmr ,0mr 1k&, k51,2, . . . , ~13!

Er ,k5^mrdmr 1k ,0&, k51,2, . . . . ~14!

Also, for Eqs.~11! and~12! to be valid whenr 51, we need
to setC0,k5D0,k[0. In the steady state, the time derivativ
can be set to zero. Summing Eq.~11! over all r ,k
51,2, . . . , andsubtracting from this 1/2 times the sum ov
r 51,2, . . . in Eq.~12!, we obtain

~p1q!C1,05wp22~p1q!(
k51

`

C1,k12wq(
k51

`

D1,k1wqs1 .

~15!

The left hand side of Eq.~15! is a finite number while the
right hand side has two infinite sums. These two sums
add up to give a finite value only if asymptotically the term
in the two summations are equal. Using the fact that
two-point correlations decouple when the separation betw
the two points become large, we obtain

~p1q!r15wq~12s1!. ~16!

Equations~16! and ~7! have to be simultaneously satisfie
This is possible only if

w~p2q!~12sc!50. ~17!

The fragmenting ratew being equal to zero is the trivial limi
in which the entire mass in the system coagulates togeth
form an infinite aggregate. When there is a biaspÞq, then
for finite w the only way Eq.~17! can be satisfied is ifsc
n

e
en

to

51; i.e., the occupation probability far away from the agg
gate is 1. This can occur only ifrc5`, which contradicts
our initial assumption thatrc is finite. Another way of seeing
a contradiction is to consider Eq.~5! when n→`. Setting
sc51, we obtain that the densities far away from the agg
gate become negative forp.q. Thus, for any finitew andr
we always have a contradiction and hence our initial assu
tion of an aggregate existing at finite density is prov
wrong. This proves that for any finiter andw, an aggregate
phase does not exist in one dimension in the thermodyna
limit. For the symmetric problem (p5q), there is no contra-
diction between Eqs.~16! and ~17!, since Eq.~17! is auto-
matically satisfied.

III. NUMERICAL CHECKS IN ONE DIMENSION

The results of the previous section thus show that an
finite aggregate cannot exist in an infinite system when th
is a nonzero bias. However, numerical simulations of fini
size systems do point to the existence of an aggregate p
~see Fig. 2!. Nevertheless, there is no contradiction with t
results of Sec. II, provided the critical densityrc(V) diverges
with the system sizeV. In this section, we study numericall
the system size dependence ofrc(V) in one dimension.

In earlier studies@10#, the system size dependence
rc(V) was not investigated because there was no system
way of making an accurate numerical measurement of
critical density. To measurerc(V), we adopted the following
procedure. For a fixed lattice size, we start the system wi
density much higher than that required to form an aggreg
The system is then allowed to reach the steady state and
biggest cluster is identified as the aggregate. We then m
sure the density in the rest of the system~excluding the ag-
2-4
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EFFECT OF SPATIAL BIAS ON THE . . . PHYSICAL REVIEW E 66, 046132 ~2002!
gregate! and use the fact that the state of the rest of
system resembles that at criticality. In Fig. 3, the system s
dependence ofrc(V) is shown on a semilogarithmic scal
From the numerical evidence, we conclude thatrc(V)
; ln(V).

As a further check, we study the occupation probabi
numerically. From Eq.~5!, the dependence ofrn on ((s6k
2sc), taken together with the fact thatrc(V); ln(V), implies
that

us6k2scu;
a6

ukux
, k@1, ~18!

with x51, which in turn implies thatsc(V) converges to its
asymptotic value as 1/V. Both of these requirements are co
sistent with numerical simulations~see Fig. 4!. The simula-
tions were done for the fully asymmetric modelp51 and
q50.

FIG. 3. The critical densityrc(V) diverges with the system siz
V as ln(V) in one dimension. The simulations were done for t
fully asymmetric modelp51 andq50.

FIG. 4. sk converges tosc ('0.2775 in this case! as 1/k. The
simulations were done for lattice size 4000 andw51.0. The inset
shows the finite-size correction tosc .
04613
e
e IV. PROBABILITY DISTRIBUTION

From the analytical and numerical evidence of Secs
and III it is clear that the system is sensitive to the manne
which the limitsM→` andV→` are taken, whereM is the
total mass in the system. WhenM is increased beyondMc
(5rcV) keepingV fixed, an infinite aggregate does form
the system. In this regime, in analogy with the symmet
problem@21#, we can then write a scaling form for the prob
ability distribution forM.Mc as

P~m,V!5
1

mt
f S m

VfD 1
1

V
d„m2~M2Mc!…. ~19!

Since the mean mass in the power law part of the distribu
scales as ln(V) ~see Fig. 3!, we immediately derivet52. In
addition, from the consideration that there is only one agg
gate, the two exponentst and f are known to obey the
scaling relationf(t21)51 @21#. This implies thatf51.
The fact that the cutoff of the power law distribution scal
as V, and not as a smaller power ofV as in the symmetric
case@21#, is consistent with the fact that the transition do
not exist for largeV.

What is the behavior of the system when the order
limits is reversed andM ,V→` keepingr5M /V fixed? In
this case, we make the reasonable ansatz

lim
V→`

P~m,r!5
1

mt
gS m

m*
D , ~20!

with the same exponentt52. The requirement that̂m&
5r taken together with Eq.~20! implies that the cutoffm*
;ear. Scaling plots of the probability distribution for vari
ous values ofr scaled as in Eq.~20! are shown in Fig. 5.

From simulations, it is seen that the functiong(x)
;const whenx→0 ~see inset of Fig. 5!. This taken together
with the exponential divergence of the mass cutoff impl
that, for infiniter, P(m) is a pure power law. This is simila

FIG. 5. The probability distribution for mass for different value
of r. The inset shows the scaling plots when the distributions
scaled as in Eq.~20!.
2-5
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R. RAJESH AND S. KRISHNAMURTHY PHYSICAL REVIEW E66, 046132 ~2002!
to the steady state of the Takayasu model@22# for river net-
works where mass aggregates in the presence of a con
influx of particles, and the steady state has a nontrivial po
law distribution.

V. NUMERICAL SIMULATIONS IN TWO DIMENSIONS

The arguments used in Sec. II to prove that there is
phase transition in one dimension are very specific to
dimension and cannot be extended to two and higher dim
sions. Instead, in this section, we numerically study
model in two dimensions. First, we measure the critical d
sity rc(V) for lattice sizes varying from 838 to 32332
using the same method as that used for the one-dimens
simulations. In this case it is seen thatrc(V) does converge
to a finite value when the system size is extrapolated to
finity ~see Fig. 6!. Hence, a phase transition does exist in
infinite-system limit.

We now show that for the system with spatial bias t
value of the power law exponentt in two dimensions is
close to that in the zero-bias case. It is difficult to make
direct measurement oft because the cutoff to the power la
grows slowly with the system size and is not large enou
~cutoff ;200 when the system size;2000) for an accurate
measurement of the slope. For instance, in the zero-bias
direct measurements oft @9,10# gave a value close to 2.
while indirect numerical methods@21# showed thatt is close
to 5/2 in all dimensions. Therefore, rather than measurt
directly for the asymmetric model, we compare the simu
tion results~see Fig. 7! for the fully asymmetric problem
with those for the symmetric problem with the same para
eters. The slopes of the two curves are comparable. He
we conclude that the exponentt for the asymmetric model in
two dimensions is very close to 5/2, as in the symme
model.

VI. SUMMARY AND CONCLUSIONS

In summary, we have investigated in detail the effect
introducing a spatial bias on the nonequilibrium phase tr

FIG. 6. The convergence of the critical density to a finite va
with increasing system size in two dimensions is shown. The si
lations were done for the fully asymmetric modelp51, q50 and
the fragmenting ratew51.0.
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sition in a model of coagulation and fragmentation. We sh
analytically that the phase transition is inhibited in one
mension. However, a signature of the two original pha
remains and the scaling implications of this are charac
ized. We have also resolved the puzzle of the exponent
being very close to 2. In two dimensions, the phase tra
tion is shown numerically to exist.

We now give a more intuitive explanation of why th
phase transition is curbed in one dimension but not in t
dimensions. In this model, there are two competing p
cesses. While the diffusion move creates larger and la
masses by coagulation, the fragmentation move tends to
ate smaller masses as well as inhibit the formation of la
masses. If the diffusion move were to be considered by its
then a cluster of sizel would be created in time of orderl 2.
In one dimension, if the fragmentation move were to be c
sidered by itself, then a fluctuation of orderl would be dis-
sipated in time of orderl 3/2 for the asymmetric model and o
order l 2 for the symmetric model. These exponents a
known exactly because of the existing exact analogy in
dimension between only fragmentation with~without! bias
and the asymmetric~symmetric! exclusion process. Thus, fo
the asymmetric problem, fragmentation always wins out o
diffusion and we only have an exponential phase. Howe
in two dimensions, bias is irrelevant for the fragmentati
move and hence a fluctuation of orderl gets dissipated in
time of order l 2, which is of the same order as the tim
required to create a cluster of sizel by diffusion.

To carry this argument further, we can study the symm
ric problem by slowing down the diffusion rate. This can
done by introducing a mass dependent diffusion rate;m2a

with a.0. The above arguments would then imply that th
dynamics ought not to have a phase transition for anya
.0. This is indeed the case, and it can be shown that
phase transition does become curbed in all dimensions@23#,
as predicted.

There remain several interesting questions to investig

- FIG. 7. The value of the power law exponentt for the fully
asymmetric model in two dimensions is very close to that of
symmetric model in two dimensions. The simulations were done
a 30330 lattice withw51.0 andr510.0.
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further. While we have numerically shown thatt52.0, it
would be interesting if it could be derived from first prin
ciples by solving the model. Further, for an infinite syste
the probability distribution of the masses has the form@Eq.
~20!#

P~m!;
1

m2
e2bme2ar

, m@1,

whereb could depend onr andw while a depends only on
w. The origin of the length scaleear under this dynamics is
an interesting point that remains to be understood. A
. E

.

pl
-

ae

n-
-

ev

at

04613
,

,

since the phase transition in one dimension is a finite-s
effect, the implications of the traffic jam that was seen
@20# need to be reexamined.
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