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Effect of spatial bias on the nonequilibrium phase transition in a system of coagulating
and fragmenting particles
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We examine the effect of spatial bias on a nonequilibrium system in which masses on a lattice evolve
through the elementary moves of diffusion, coagulation, and fragmentation. When there is no preferred direc-
tionality in the motion of the masses, the model is known to exhibit a nonequilibrium phase transition between
two different types of steady state, in all dimensions. We show analytically that introducing a preferred
direction in the motion of the masses inhibits the occurrence of the phase transition in one dimension, in the
thermodynamic limit. A finite-size system, however, continues to show a signature of the original transition,
and we characterize the finite-size scaling implications of this. Our analysis is supported by numerical simu-
lations. In two dimensions, bias is shown to be irrelevant.
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[. INTRODUCTION dom distribution of non-negative integer masses, the system
evolves in time via the following microscopic processes. In
Systems far from equilibrium can undergo nonequilibriuman infinitesimal timedt, (i) with probability pdt (qdt), the
phase transitions between two different types of steady staf®ass at each site hops to one of its nearest neighbors with
when the parameters of the system are varied. It is importarificreasing (decreasing coordinates; (ii) with probability
to know how robust such transitions are with respect tovpdt(wqd?), unit mass is chipped off from an already ex-
changes in the governing dynamics and to ask if a signaturéting mass and added to one of its nearest neighbors with
of the original phases remains, even if the transition is lostincreasing(decreasingcoordinates. Following these moves,
The introduction of a spatial bia@ preferred directionis e masses at each site add (spe Fig. 1 The dynamics

one factor that is known to affect the scaling functions andconserves the total mass of the system. Hence, the param-

the exponents characterizing nonequilibrium transitions. ExEters defining _the system are th_e bsq, the densityp,
nd the chipping or fragmentation rate The casep=q

amples where bias plays a role include models of extremat . .
dynamics[1,2], the simple exclusion proce$8], sandpile cor.responds to the 2€ero bias case or the symmetric model
models[4], directed percolatiofs], interface depinning6], while the casgy#(q introduces a preferred direction in the

: e . motion of the masses and corresponds to the asymmetric
reaction-diffusion systen{g], and random walkers in fractal model P Y

media[8]. These examples consist of systems in which pa- The model may be mapped onto generalizations of other
rameters need to be tuned to reach criticality as well as sys-
tems that are self-organized critical. In both cases, bias eithe~

changes the universality class characterizing the systen

g p
F oA QW pw
[1-7] or causes localizatiof8] or induces boundary driven e
transitions[ 3].
In this paper we study the effect of bias on a recently
_|

introduced model of aggregation and fragmentation, which
was shown[9,10] to exhibit an unusual nonequilibrium o
phase transition belonging to a universality class different
from models studied earli¢B,11]. We show that bias in this q P ,
model plays a different role from any of those mentioned SF NN ,LL: 53:
above in that even an arbitrarily small bias inhibits the phaset} C @@ COOCO®CCOOC 00O COCOC@®
transition entirely in one dimension. Remarkably though, a
signature of the transition remains and modifies the finite-
size behavior of the system, and we characterize the scalini
implications of this. In two and higher dimensions, we show ic}
that bias has no effect on the phase transition.

We define the model on @dimensional hypercubic lat-
tice with periodic boundary conditions. Starting from a ran-

FIG. 1. (a) The model as defined in the texh) To obtain the
hard core lattice model from the masses, lay down the masses on

*Electronic address: r.ravindran1@physics.ox.ac.uk their sides(c) The interface is obtained by replacing every shaded
"Present address: Santa Fe Institute, 1399 Hyde Park Road, Samficle by a line segment in the-45° direction and every empty
Fe, NM 87501. circle by a line segment in the 45° direction.
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well studied models of nonequilibrium statistical mechanics. ' ' '
In one dimension the system of masses described above me ' '
be equivalently thought of10] as a collection of particles 10° £
and holes on a ring, or a one-dimensional interface evolving e
in time (see Fig. 1 In this language, thev— o limit exactly
corresponds to the well studied symmei@symmetri¢ ex- 10
clusion proces$l12] for p=q (p#q). In the interface lan- g
guage, this correspondl$3] to an interface evolving via the *
Kardar-Parisi-Zhang or the Edwards-Wilkinson dynamics
[14] for the casep+#q andp=q, respectively. For a finite

w, the nearest neighbor particle exchanges of the exclusiot 19 |
process(or corner flips of the interface growth mogelre

further augmented by long-range moves.

Models similar to the one studied in this paper have also 10°® 0
been studied in other contexts. A slightly different off-lattice 10
version of this model was studied within the rate equation
approach in the context of polymer chain groj]. In this FIG. 2. P(m) is plotted against for three values of density.
case, the mass clusters were thought to represent polymefighe cutoff is seen to depend gnfor small values of the density,
Although the aggregation of polymers and dissociation ofwhile for larger values it is independent pf The mass in excess of
single monomers were allowed in this model, it lacked thethe critical mass forms an aggregate. The solid line has an exponent
important process of local diffusion which we include in our —2. The simulation was done for system si¥e=500 andw
study. Various models of coagulation and fragmentation=3.0. In the inset, the dependence of the cutoff of the power law on
with coagulation rate proportional to mass, have been studied is shown. The simulations were done for 15.
in the context of gelatiofl16]. In these systems, due to the
enhanced coagulation, a dal cluster which contains a finite of the total mass of the system. That is, the mass distribution
fraction of the total magsforms at a finite time. The expo- P(m) changes from an exponential distribution to an alge-
nents at the transition point were shown to depend orbraic one atp.. For p>p., the mass distribution remains
whether the process of fragmentation was present or abserthe same as at., while all the mass in excess of the critical
Models of fragmentation in which a fraction of existing massdensity coagulates together forming an infinite aggregate.
(as opposed to a single particlmay break off have also The mathematical mechanism giving rise to the infinite ag-
been studied if17-19. In these models, it could be de- gregate was found to be very similar to that of equilibrium
duced that an infinite aggregate that contains a finite fractioBose-Einstein condensation in an ideal Bose gas.
of the total mass never forms. A model with bias very similar  Bias is introduced in the motion of the masses on the
in spirit to the model we study here was also studied in thdattice by lettingp+# q. In the limits of only diffusion or only
context of traffic flow{20] and the phase transition observed chipping, the steady states reached are the same as those for
numerically was interpreted as a traffic jam occurring forthe p=q case. Hence, one might expect a phase transition in
large densities of cars. the p-w plane as before. Further, the mean field analysis

An understanding of the steady state reached by the sy$9,10] does not recognize any difference between the two
tem may be obtained by considering the limits of only diffu- cases and thus predicts the same behavior as in the zero-bias
sion (w=0) or only chipping (v==). Both of these cases case. Earlier Monte Carlo simulations of this system in one
are exactly solvable. In the former case, the system maps wimension did indeed seem to suggest the existence of a
the well studied reaction-diffusion systemA+nA—(m phase transition similar to the symmetric case, though with
+n)A, and the steady state reached is simply one in which=~2.0[10]. The results of these simulations are summarized
all the particles accumulate on a single site. In the oppositen Fig. 2. For a fixed lattice size and, when the total mass
limit (w—o), the model is again exactly solvable and thein the system is increased beyond a certain critical mass, the
system reaches a steady state in which the mass is uniformfgrmation of an aggregate is observed. The power law re-
spread out over the system with the probability that a givergime has a lattice size dependent cutste inset of Fig. 2
site has a mass being exponentially distributed. as in the symmetric case. However, the value ¢f-2.0) is

The special casp=q, corresponding to zero bias, was a puzzle since a finite system density implies thahould be
studied earlier using a mean field approximaiofy Monte  strictly greater than 2the first moment, which is the density
Carlo simulations[10,21], as well as some exact analysis of the system, would diverge if<2).

[21]. It was shown that the system undergoes a nonequilib- In this paper, we analyze the model for:q and show
rium phase transition in the-w plane at some critical den- that the apparent existence of a phase transition in the Monte
sity p(w). In particular,P(m), the probability that a ran- Carlo simulations is purely a finite-size effect in one dimen-
domly chosen site has mass was shown to vary for large sion, with the critical density (V) for fixed w diverging

m as (i) P(m)~exp(—m/m*) for p<p., (i) P(M)~m~7  with system size&/ as In{/). We argue that the exponentis

at p=p. with 7=5/2, and (ii) P(m~m~" exactly 2. Intwo and higher dimensions, however, a transi-
+“infinite aggregate” forp>p., where by “infinite aggre- tion from an exponential to an aggregate phase does occur at
gate” we mean a single large mass equaling a finite fractiorinite critical density.

F
P(m)

104 +
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The rest of the paper is organized as follows. In Sec. Il, dp,
we show analytically that an aggregate phase cannot exist in —j;- = 0=W[PSc-1~(P+Q)Sc+ S 1]+ (p+0q)
the one dimensional system, thereby showing that there is no
phase transition in one dimension. Section IIl contains nu- X[pk=1—2pk+ pr+1T po(26k 0= Ok, —1— Sk D]
merical evidence for the results of Sec. Il, from Monte Carlo 4)
simulations of the model. In Sec. IV the exponents describ-
ing the probability distribution for mass in one dimension are,, nares =1 ando.=(m.) ands.=(1— & are the av-
characterized. Section V contains a numerical study of the o= prc={mi) = mk'°>

two-dimensional problem. Section VI contains a summar}}e.rage density and occupation probabili_ty of a sk't@ttice
and conclusions sites away from the aggregate, respectively. A point to note

about Eg.(4) is that bias plays a role only in the terms
coupling to the chipping rate. It can be checked that intro-
Il. ARGUMENTS FOR NO PHASE TRANSITION IN THE ducing a bias only in the diffusion move and keeping the
PRESENCE OF SPATIAL BIAS IN ONE DIMENSION chipping move symmetric does not change the behavior of
e model from the fully symmetric versiqu~=g.
_We now consider Eq4) in the steady state when the time
erivative is set to zero. The set of linear equations in(&y.

In this section, we prove that in the presence of a spatiatlh
bias, an aggregate phase cannot be present at any finite de
sity in one dimension. We do so by assuming that an aggre- L o g .
gate phase exists, and then showing that this leads to certa'?ﬂay,be solved for a fmlte or an infinite lattice to obtain the
contradictions. To proceed, assume that a single infinite ag2S IN t€rms of thes’s. In the former case, a closed form
gregate exists in the system and that the rest of the system f&Pression for the densities is easily obtained. However, it is
at a finite critical densityp, (analogous to the symmetric more informative to look at the equations for an infinite lat-

casg. Consider now a frame of reference that is attached téice'. _Whe(e the sites with neg_{:\ti\(&fft of aggregate and
this aggregate. Lep, (t) be the mass transferred in an in- positive (right of aggregateindices may be treated sepa-

finitesimal timedt at timet from a sitek lattice sites away rately. For this case, we obtain for-0,
from the aggregate to a sitet 1 sites from the aggregate.

w w(p—q)
Then =nlp+ ——(gs — _'_—Sr}
Pn P1 p+q(ql p) p+q °
M (t+dt)=m(t) + 701+ 7es1— 7 — 7% F a5 T2y, n
k( ) k() k-1 T+17 Tk — Tk k k (1) +m 2 (Sk_sf)_i_ﬂ(l_sn), (5)
p+q k=1 < ptq
where my(t) is the mass at a sitk lattice sites from the
aggregate at timg anda, is the change in mass due to the B N w _ _W(p—Q) |
diffusion of the aggregate. The time dependence of the vari- P -n~ NP1 p+q (pS-1-q) p+q S
ables on the right hand side of Ed.) have been suppressed h
for the sake of clarity. Equatiofi) accounts for all the ways w(p—q) | q
in which the mass on a sitesites away from the aggregate + ptq k:z_l (Sc—sw)+ g (1=s_,), (6

can change under the dynamics. These changes are caused

either by the mass transfer to and from neighboring sites agneres’ =lim. _s. ands'.=lim. .s. ..

exemplified by thep,’s or by the motion of the aggregate, Mo | O bt 1

which leads to a relabeling of sites, as depicted bya}ie
From the definition of the model, it is clear that

By assumption, we require that, tends to a finite value
asn—oo, For this, we require first that the term proportional
to nin Egs.(5) and(6) vanishesand secondly thas.., ap-
proaches its asymptotic value faster than. Ifhe first con-

My with prob pdt, dition expressep; andp_, in terms ofs; ands_; as
7 =1 1= Omeo with prob pwdt, 2 W(p—gsy) —W(p—)s.
0 otherwise, p1= = (7)
p+q
and similarly forz, , with p replaced byq in Eq. (2). When B B o
the aggregate hops, the sites have to be relabeled and this p_lzw(q Ps-1)—W(q p)sC' )
leads to pP+q

which when substituted in tHe=0 equation of Eq(4) leads

my,1— M, with prob pdt, @ 1o

ay = .
0 otherwise,
st=s.=s,. 9
and correspondingly foe, , with k+1 replaced byk—1
andp by g in Eq. (3). Taking averages on both sides in Eg. This is consistent with the fact that far from the aggregate,
(1) and setting the time derivatives to zero in the steady statéhe occupation probability is the same on either side. The

we obtain second condition, that.., approaches its asymptotic value
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faster than I, will be useful for determining the exponents tween thep,’s andsy’s. Using these relations we will be able

and will be studied numerically in Sec. lII. to show a contradiction. Consider the two-point correlations
A important point to note from Eq(5) is that the two in the aggregate frame of reference. Let

casesp=q andp#q are quite different. Fop=q, the cu- Cre=(mm, o) (10)

mulative sum over ths,’s vanishes ang, depends only on rk AL

the site occupancy of the site However, wherp#q, the  The equations governing the temporal evolution of the two-

sum plays a role in determining the value of the site densitypoint mass-mass correlations may be derived by considering

and it becomes important to understand the behavier.qf the mass transfer between two neighboring sfeee Eq.

as a function ofh. We do that in Sec. IIl. (1)]. Multiplying together Eq(1) for m, and the correspond-
We now examine the two-point correlations in the pres-ing one form, ., keeping terms up to ordeit, and taking

ence of the aggregate in order to obtain further relations beaverages, we obtain

dc,
Gt = PCre1ktAC1k-1+PCr -1+ AC a1+ PCroaja 1+ GG 14— 3(P+A)Cr kWL —PDy— 11+ (P+A)D
=Dt 1k-17 PEr k-1 (PTDE; k= AE; k11— 6k a[ACr 110t PCr ot WPS +WAS 1 4], T,k=12,..., (11
dC, o
gt~ (PTDICr+1072C o+ Cro10/+2pCro11+20C, ;= W2PDr 11+ 2qE 1]+ WI(P+Q)S +PS -1+ 0Sr41],
r=12,..., (12
[
where =1, i.e., the occupation probability far away from the aggre-

gate is 1. This can occur only .=, which contradicts
our initial assumption thai,. is finite. Another way of seeing
a contradiction is to consider E¢5) whenn—oo. Setting

E k=(Mbp 0 k=12,.... (14 s.=1, we obtain that the densities far away from the aggre-

gate become negative fpr>q. Thus, for any finitew andp

Also, for Egs.(11) and(12) to be valid wherr =1, we need e always have a contradiction and hence our initial assump-
to setCox=Dox=0. In the steady state, the time derivativestion of an aggregate existing at finite density is proved
can be set to zero. Summing Eqll) over all r,k  wrong. This proves that for any finite andw, an aggregate
=1,2,..., andsubtracting from this 1/2 times the sum over phase does not exist in one dimension in the thermodynamic
r=12,... in Eq.(12), we obtain limit. For the symmetric problemp(=q), there is no contra-
diction between Eqs(16) and (17), since Eq.(17) is auto-
matically satisfied.

Dr,k:<5mr ’Omr+k>, k:1,2, ey (13)

(p+ q)Cl,o=W|o—2(|0+q)k§=)l Coxt ZWQkZl Dyx+was;.
(15 IIl. NUMERICAL CHECKS IN ONE DIMENSION

The left hand side of Eq(15) is a finite number while the  The results of the previous section thus show that an in-
right hand side has two infinite sums. These two sums cafinite aggregate cannot exist in an infinite system when there
add up to give a finite value only if asymptotically the termsijs a nonzero bias. However, numerical simulations of finite-
in the two summations are equal. Using the fact that thejze systems do point to the existence of an aggregate phase
two-point correlations decouple when the separation betweefsee Fig. 2 Nevertheless, there is no contradiction with the

the two points become large, we obtain results of Sec. II, provided the critical densjty(V) diverges
N B 1— 16 with the system siz¥. In this section, we study numerically
(P+a)p1=wo(1=sy). (16) the system size dependencepgfV) in one dimension.

In earlier studieq[10], the system size dependence of
pc(V) was not investigated because there was no systematic
way of making an accurate numerical measurement of the

w(p—q)(1—s.)=0. (17) critical density. To measure.(V), we adopted the following
procedure. For a fixed lattice size, we start the system with a
The fragmenting ratev being equal to zero is the trivial limit density much higher than that required to form an aggregate.
in which the entire mass in the system coagulates together he system is then allowed to reach the steady state and the
form an infinite aggregate. When there is a hiesq, then  biggest cluster is identified as the aggregate. We then mea-
for finite w the only way Eq.(17) can be satisfied is i,  sure the density in the rest of the systéemcluding the ag-

Equations(16) and (7) have to be simultaneously satisfied.
This is possible only if
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0.205 In(x)+0.025

Pe (V)

100 1000
v

FIG. 3. The critical density.(V) diverges with the system size

V as In{) in one dimension. The simulations were done for the

fully asymmetric modep=1 andq=0.

gregateé and use the fact that the state of the rest of the
system resembles that at criticality. In Fig. 3, the system size

dependence op.(V) is shown on a semilogarithmic scale.
From the numerical evidence, we conclude tha(V)

~In(V).
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-8 !
10
10° 10!

FIG. 5. The probability distribution for mass for different values
of p. The inset shows the scaling plots when the distributions are
scaled as in Eq20).

IV. PROBABILITY DISTRIBUTION

From the analytical and numerical evidence of Secs. Il
and lll it is clear that the system is sensitive to the manner in

As a further check, we study the occupation probabilityWhich the limitsM — o andV—co are taken, wheri is the

numerically. From Eq(5), the dependence gf, on = (5.
—S.), taken together with the fact thag(V) ~In(V), implies
that

a-
|Sek= S|~ —,

[k

with x=1, which in turn implies thas.(V) converges to its
asymptotic value as ¥/ Both of these requirements are con-
sistent with numerical simulationsee Fig. 4. The simula-
tions were done for the fully asymmetric modet1 and
g=0.

>1, (18)

107 -
N 0.64/x
0
. 10_2 N *+\"+::’: ) @ *\ ) A
4 o b
&
right side of aggregate +
left side of aggregate
103 F 0.1896/x -
0.2417/x -~
10! 10
k

FIG. 4. s, converges tes, (~0.2775 in this cageas 1k. The
simulations were done for lattice size 4000 amet 1.0. The inset
shows the finite-size correction 8.

total mass in the system. Whéw is increased beyonil
(=pcV) keepingV fixed, an infinite aggregate does form in
the system. In this regime, in analogy with the symmetric
problem[21], we can then write a scaling form for the prob-
ability distribution forM>M, as

v (19

1 1
P(mV)=—f +5 8m=(M=Mg).
m

Since the mean mass in the power law part of the distribution
scales as IN) (see Fig. 3 we immediately derive=2. In
addition, from the consideration that there is only one aggre-
gate, the two exponents and ¢ are known to obey the
scaling relationg(7—1)=1 [21]. This implies that¢=1.
The fact that the cutoff of the power law distribution scales
asV, and not as a smaller power dfas in the symmetric
case[21], is consistent with the fact that the transition does
not exist for largeV.

What is the behavior of the system when the order of
limits is reversed andVl,V—o keepingp=M/V fixed? In
this case, we make the reasonable ansatz

) m
lim P(

V—oo

(20

1
mvp) = _Tg( _* ’

m”\m
with the same exponent=2. The requirement thatm)
= p taken together with Eq.20) implies that the cutofin*
~e“P. Scaling plots of the probability distribution for vari-
ous values op scaled as in Eq.20) are shown in Fig. 5.

From simulations, it is seen that the functiay(x)

~const wherx— 0 (see inset of Fig. b This taken together
with the exponential divergence of the mass cutoff implies
that, for infinitep, P(m) is a pure power law. This is similar
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FIG. 6. The convergence of the critical density to a finite value m

with increasing system size in two dimensions is shown. The simu-
lations were done for the fully asymmetric moge+1, g=0 and
the fragmenting ratev=1.0.

FIG. 7. The value of the power law exponentfor the fully
asymmetric model in two dimensions is very close to that of the
symmetric model in two dimensions. The simulations were done for

to the steady state of the Takayasu md@] for river net- & 3030 lattice withw=1.0 andp=10.0.

works where mass aggregates in the presence of a constant
influx of particles, and the steady state has a nontrivial powesition in a model of coagulation and fragmentation. We show

law distribution. analytically that the phase transition is inhibited in one di-
mension. However, a signature of the two original phases
V. NUMERICAL SIMULATIONS IN TWO DIMENSIONS remains and the scaling implications of this are character-

ized. We have also resolved the puzzle of the exponent

The arguments used n Sec._ Il to prove that th_ere IS n(E)eing very close to 2. In two dimensions, the phase transi-
phase transition in one dimension are very specific to ON& n is shown numerically to exist

e e a1 GUE & mae e expianaton of why e
| : . Y y study phase transition is curbed in one dimension but not in two
model in two dimensions. First, we measure the critical den:

. i . ; dimensions. In this model, there are two competing pro-
sity pe(V) for lattice sizes varying from 88 to 32<32 cesses. While the diffusion move creates larger and larger

u§|ng|] tthe sarlnetr:qethod af‘.that us?d fo\r/ thde one-dimension asses by coagulation, the fragmentation move tends to cre-
simulations. In this case it is seen tha(V) does converge ate smaller masses as well as inhibit the formation of large

]E.O .? f|(n|te \Ilzglu%vl\i'hen the s;r/]stemtsme_tl_s eﬁtrapola'ge?_ totr']nf’nasses. If the diffusion move were to be considered by itself,
finity (Se€ F1g. B. nence, a phase transition does existin &,y 5 cyster of sizewould be created in time of ordéf.
infinite-system limit.

We now show that for th tem with tial bias th In one dimension, if the fragmentation move were to be con-
| N foth sho all or the Syr;E_: W dspa al bias Negjqereq by itself, then a fluctuation of ordewould be dis-
value of the power law exponemt in o diMensions IS = gin4i64 in time of order®? for the asymmetric model and of
close to that in the zero-bias case. It is difficult to make arder 12 for the symmetric model. These exponents are
direct measurement of because _the cutof_“f to the power law known exactly because of the existing exact analogy in one
grows slowly with the system size and is not large enougrhimension between only fragmentation witWithout) bias
(cutoff ~200 'ENr:‘etE th? systgm .5'2?2000). fci; an accgrate and the asymmetricsymmetri¢ exclusion process. Thus, for
(rjneas;uremen 0 ets g?eé 18r Instance, '? elzero-t 'azsgaﬁ?e asymmetric problem, fragmentation always wins out over
';ﬁc .n:jgaSl:remen S | [ ’th] %alve ha va;ctehcb?se IO ~ diffusion and we only have an exponential phase. However,
w '5?2”! IreI(I: drjumerl_ca m$h oc[f 1s OV\r’]e ha IS CIOS€ i two dimensions, bias is irrelevant for the fragmentation
to in all dimensions. Therefore, rather than measure ,,ye and hence a fluctuation of ordegets dissipated in
directly for the asymmetric model, we compare the S'mU|a'time of order|2. which is of the same order as the time
tion results(see Fig. 7 for 'the fully asymmetric problem required to create a cluster of sik@y diffusion.
with those for the symmetric problem with the same param- = 4, carry this argument further, we can study the symmet-
eters. The slopes of the two curves are compgrable. H.encﬁc problem by slowing down the diffusion rate. This can be
we conclude that the exponenfor the asymmetric model in done by introducing a mass dependent diffusion rata—*
twodd||men3|0ns is very close to 5/2, as in the symmetriGyy, = 0. The above arguments would then imply that this
model. dynamics ought not to have a phase transition for any
>0. This is indeed the case, and it can be shown that the
VI. MMARY AND NCLUSION - ! . .
sV CONCLUSIONS phase transition does become curbed in all dimendi28k
In summary, we have investigated in detail the effect ofas predicted.
introducing a spatial bias on the nonequilibrium phase tran- There remain several interesting questions to investigate
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further. While we have numerically shown that2.0, it  since the phase transition in one dimension is a finite-size
would be interesting if it could be derived from first prin- effect, the implications of the traffic jam that was seen in
ciples by solving the model. Further, for an infinite system,[20] need to be reexamined.
the probability distribution of the masses has the f¢&n.
(20)]
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